

#### **BRIDGE RATING**





ACEC-DOT

**Don Idol**State Bridge Management Unit

**Gichuru Muchane** 

Structure Design Unit



#### **BRIDGE MANAGEMENT**

- National Bridge Inventory (NBI)
  - ➤ Database of the Nation's bridges (~600,000).
- Bridges located on public roads
  - ➤ Interstate Highways, U.S. highways, State, County Roads and City Streets as well as publicly-accessible on Federal lands.

2



#### **BRIDGE MANAGEMENT**

- North Carolina Data
  - ➤ North Carolina Maintains ~19,500 Bridge Records
  - ➤ State Owned Structures ~18,300 Bridge Records
    - ➤ Bridges ~13,600
    - ➤ Bridge Size Pipes and Culverts ~4,700
  - ➤ Non-State Owned Structures ~1,200
  - ➤ Municipal Structures ~750
  - ➤ Government Agencies, Railroads, Private ~450



#### **BRIDGE MANAGEMENT**

- FHWA established National Bridge Inspection Standards (NBIS).
- Periodic inspection and evaluation of all highway bridges subject to the NBIS.
  - ➤ Once every 2 years
- Maintain a current inventory of structures.
- Report the **data** to the FHWA annually in April.
- **Bridge Rating** is a part of the data reported.







#### **BRIDGE RATING CHALLENGES**



- Legal Loads
  - > Interstate
  - ➤ Non-Interstate

- Design Loads
  - ➤ H-15
  - ➤ HS-20
  - ➤ HL-93





#### **BRIDGE RATING METHODS**

- Timber bridges and Truss members are rated using **WSD**.
- Existing steel and concrete bridges that were designed using the **WSD** or **LFD** method are rated using **LFR** method.
- Bridge Management Unit (BMU) performs both **Inventory** and **Operating** Ratings.
- **Bridge Posting** in North Carolina is based on the **Operating Rating**.



- Bridge Posted
- Minimize Number of Posted Bridges





- Commerce
- Emergency
- School Buses

9



#### TRANSITION to LRFR

- Implementing LRFD
- Collaboration between FHWA, BMU & SDU.
  - > Rating Bridges designed by LRFD?
- Bridges designed by the **LRFD** method shall be rated by the **LRFR** method.
- Rating adopted as an integral part of design.

10





## MANUAL for BRIDGE EVALUATION

- Replaces both the 1998 AASHTO Manual for Condition Evaluation of Bridges and the 2003 AASHTO Guide Manual for Condition Evaluation and Load and Resistance Factor Rating (LRFR) of Highway Bridges.
- Establishes inspection procedures and evaluation practices that meet the National Bridge Inspection Standards (NBIS).



# MANUAL for BRIDGE EVALUATION

- MBE serves as a single standard for the evaluation of highway bridges of all types.
- MBE divided into eight Sections.
  - ➤ Each section discusses a distinct phase of the overall bridge inspection and evaluation program.
- MBE -- Section 6: Load Rating

13



#### **LRFR**

• General Load-Rating Equation

$$RF = \frac{C - (\gamma_{DC})(DC) - (\gamma_{DW})(DW) \pm (\gamma_{P})(P)}{(\gamma_{LL})(LL + IM)}$$
(6A.4.2.1-1)

Design load rating

- First-level assessment of bridges based on the HL-93 loading and LRFD design standards.
- ➤ Operating and Inventory

14



#### **LRFR**

- AASHTO legal loads and State legal load rating
   Second-level rating that provides a single safe load capacity (for a given truck configuration).
- Rating assumes legal load force effects are enveloped by the design load (HS-20 / HL-93).
- Statutes governing NC Legal Loads are subject legislative revisions.









#### LRFR OBSERVATIONS

- Legal Load Rating
  - ➤ Neither inventory nor operating.
  - ➤ Live load factors 1.40 1.80 (selected based on the truck traffic conditions at the site).
  - Service III rating for concrete bridges is optional.
  - Service III live load factor is greater than live load factor used for design.



19



#### LRFR OBSERVATIONS

- LRFR paradigm shift
  - ➤ Probability of failure vs. reserve strength.
- Incongruities between LRFD and LRFR.
- Legal Load Rating < 1.0 when force effects similar /equal to HL-93.



## LRFR POLICY

- Established Legal Load Live Load Factors.
- Require Service III Legal Load Rating.

#### Limit States and Load Factors for Load and Resistance Factor Rating (LRFR)

| Detides        |             | Dead            | Dead            | Design Load   |                   | Legal             |
|----------------|-------------|-----------------|-----------------|---------------|-------------------|-------------------|
| Bridge<br>Type | Limit State | Load            | Load            | Inventory     | Operating         | Load              |
| 1,700          |             | γ <sub>DC</sub> | γ <sub>DW</sub> | $\gamma_{LL}$ | $\gamma_{\rm LL}$ | $\gamma_{LL}$     |
| Steel          | Strength I  | 1.25            | 1.50            | 1.75          | 1.35              | $1.40^{\dagger}$  |
|                | Service II  | 1.00            | 1.00            | 1.30          | 1.00              | 1.30              |
|                | Fatigue     | 0.00            | 0.00            | 0.75          | _                 | -                 |
| Prestressed    | Strength I  | 1.25            | 1.50            | 1.75          | 1.35              | 1.40 <sup>†</sup> |
| Concrete       | Service III | 1.00            | 1.00            | 0.80          | _                 | $0.80^{\dagger}$  |

<sup>† -</sup> Variance from the AASHTO Manual for Bridge Evaluation.

21



## LRFR POLICY

#### Allowable Tensile Stress in Prestressed Concrete at Service Limit State

| Exposure                          | Girder Type | σ <sub>allow</sub> <sup>‡</sup> Initial Rating ksi (MPa) | σ <sub>allow</sub><br>Future Rating<br>ksi (MPa) |  |
|-----------------------------------|-------------|----------------------------------------------------------|--------------------------------------------------|--|
| Non-Corrosive                     | Cored Slabs | 0                                                        | $0.19\sqrt{f_c^{'}} \ (0.5\sqrt{f_c^{'}})$       |  |
|                                   | Box Beams   | 0                                                        | $0.19\sqrt{f_c^{'}} \ (0.5\sqrt{f_c^{'}})$       |  |
|                                   | I-Girders   | $0.19\sqrt{f_c^{'}} \ (0.5\sqrt{f_c^{'}})$               | $0.24\sqrt{f_c^{'}} \ (0.62\sqrt{f_c^{'}})$      |  |
|                                   | Cored Slabs | 0                                                        | $0.0948\sqrt{f_c'} \ (0.25\sqrt{f_c'})$          |  |
| Corrosive and<br>Highly Corrosive | Box Beams   | 0                                                        | $0.0948\sqrt{f_c^{'}} (0.25\sqrt{f_c^{'}})$      |  |
| ,                                 | I-Girders   | 0                                                        | $0.0948\sqrt{f_c^{'}} (0.25\sqrt{f_c^{'}})$      |  |

<sup>&</sup>lt;sup>‡</sup> - As required for design, see Chapter 2 for details.







#### LRFR in the FUTURE

- Maintain ASD / WSD and LFR only?
- Maintain LFR & adopt LRFR?
- Convert all Ratings to LRFR?
- None of the above?
- Some other combination / plan?



# QUESTIONS and DISCUSSION